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ABSTRACT

The architecture and structures used by the MacPitts

silicon compiler to design integrated circuits are described,

and the capabilities and limitations of the compiler are

discussed. The performance of several combinational and

pipeline adders designed by MacPitts and a hand-crafted

pipeline adder are compared. Several different MacPittsI!
design errors are documented. Tutorial material is presented

to aid in using the MacPitts interpreter and to illustrate

timing analysis of MacPitts-designed circuits using the

program Crystal.
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I. INTRODUCTION

The design of very large scale integrated (VLSI) circuits

is a very time consuming process. To reduce the time and <

cost required to design VLSI circuits various silicon

compilers have been developed [Ref. 1]. One of these

compilers, the MacPitts silicon compiler, was developed at

MIT Lincoln Laboratory in 1981-1982 [Refs. 2 and 3].

The MacPitts silicon compiler is a large and complex

computer program that frees the circuit designer from having

to worry about the details of the actual design and layout

of the circuit. From a short program (usually less than

fifty lines) that contains a functional description of the

desired circuit, MacPitts completely designs an implementa-

tion of the VLSI chip and outputs a file in Caltech

Intermediate Form (CIF) that describes the circuit. The CIF

file can be used to perform a functional simulation or a

timing analysis of the circuit. After verifying the

functional correctness of the circuit the CIF file can be

sent to a silicon foundry so that the circuit can be

fabricated.

The MacPitts compiler has been used previously at the

Naval Postgraduate School by Carlson [Ref. 4] to design a

pipeline multiplier circuit. Carlson's thesis contains a

11 :
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The one-bit full adder circuit in Figure 2.5 shows how

a complex function can be implemented by putting several

different organelles together. In this case two XOR

organelles and one NAND organelle are used. Figure 2.6

shows how the one-bit adder is used by MacPitts to build a

two-bit full adder circuit with carry in.

Two different structures are used in the data-path to

define and store organelle inputs and outputs. They are the

internal port and the register, and both are the same size

as the data word. Internal ports are used primarily to

transfer the output of an organelle to another organelle or

to the Weinberger array within the same clock cycle or state

period [Ref. 2]. Registers are used to store word size data

elements. A one-bit register organelle consists of a

master-slave flip-flop, as shown in Figure 2.7, that is

controlled by the MacPitts three-phase clock [Ref. 31. This

structure allows the output of the register to be valid

during a clock cycle even though a new input value could be

in the process of being clocked into the register. The

enable line in Figure 2.7 is used to control which clock

cycles the register samples the input line for data storage.

A memory refresh cycle is performed if new data is not

stored during a clock cycle. If data is to be stored in

every clock cycle the enable line is connected to Vdd.

22
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by the ordering of the word operations specified in the .mac

program. The first word operation encountered by the

compiler in the .mac program is the first organelle in the

data-path and so on. The compiler takes into account the

size requirements of each organelle to scale the amount of

space between organelles to allow enough room for connection

lines, control lines, power lines, and local interconnection

buses. Power and ground buses are also sized based on

organelle power requirements [Ref. 3]1.

The routing of data to and from the data-path is very

inefficient and requires many data lines to be longer than

necessary. As seen in Figure 2.1, the chip pads are placed

only on the top, right and bottom sides of the chip. Data

entering the chip on input ports and exiting the chip

through output ports is routed from the left side of the

data-path. This causes very long data lines. Data from the

data-path to the Weinberger array is routed from the bottom

side of the data-path to the top side of the array.

All arithmetic and boolean function organelles are

implemented using three basic gate structures. They are the

NAND, NOR and inverter. Figure 2.3 shows an AND organelle

that is made from a NAND gate and an inverter. In Figure 2.4

an XOR function is implemented using NAND gates. An OR gate

is implemented from a NOR gate and an inverter and the

boolean EQU function is implemented using four NOR gates.

20



C. THE DATA-PATH

The data-path is the unit where all word size operations

are performed. These operations consist of arithmetic

* functions (addition, subtraction, incrementing, decrementing

and equals), boolean functions (and, or, not, nand, nor,

xor and equ), data shifting operations, comparison tests and

data storage and transfer using registers and ports [Refs. 2

and 3]. The structure consisting of a one-bit slice of the

above operations is referred to as an organelle and the LISP

code used by the MacPitts compiler to generate each organelle

can be found in the library and organelle sections of the

MacPitts source code listing.

The size of the data-path is determined by the number

of bits in the data word (specified at the beginning of the

.mac program) and the number of word size operations to be

performed. The number of bits in the data word specifies

the height of the data-path. The larger the data word the

taller the data-path. The width is determined by the number

of functions performed. When a specific function is to be

performed in the data-path the organelle that performs that

function is placed in the data-path. Replicas of that

organelle (one for each bit of the data word) are stacked on

top of each other. The organelle for the most significant

bit of the data word is on the bottom of the stack and the

organelle for the least significant bit is on the top. The

ordering of the organelles in the data-path is determined

19
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corner of the chip and continuing in a clockwise direction.

The version of the MacPitts silicon compiler installed at the

Naval Postgraduate School will not place pads on the left edge

of the chip. A newer version of the compiler that is

available commercially places pads on all four sides of the

chip. All output pads are super buffered but the input data

and clock pads are not.

Along with the ground and power pads, the three-phase

clock pads must also be defined in all MacPitts programs

even though the clock may not be used in the circuit. The

clock bus is always laid out on the chip. The MacPitts

compiler uses a three-phase overlapping clock scheme where

the clock period is divided into five segments as shown in

Figure 2.2. This unusual clock scheme is used to drive the

data storage registers and flags (see paragraphs C and E

below) and according to [Ref. 4] allows a more compact

layout of the registers and flags.

A reset pad must also be defined if the "process" form

is used in the .mac program even if the reset function is

not used anywhere in the program. This is because the

MacPitts compiler may use the reset signal in its internal

algorithms when it generates the chip [Ref. 2]. If the

"always" form is the only form used in the .mac program the

reset pad is not required.

17
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II. THE MACPITTS DESIGN ARCHITECTURE

A. INTRODUCTION

The MacPitts design structure consists of five main

components. They are the chip design frame with pads, the

data-path, the sequencer, the Weinberger array and the flags

block (see Figure 2.1). Input ports or signals are used to

bring input data into the chip and output ports or signals

are used to output data from the chip. The difference

between ports and signals is that a port has as many bits as

the data word defined by the programmer in the MacPitts .mac

program and a signal is only a one-bit data element.

B. THE DESIGN FRAME

The MacPitts compiler was designed to have no limit on

the size of a circuit that it would design although large

circuits may take several days of computer time to be

completed. The design constraints that must be used for

practical designs are the MOSIS chip size and pad number

- .fabrication limitations. The current MOSIS limitation for

the chip size is 7900 x 9200 microns and the maximum number

of pads is 84.

All pads are defined in the "def" section of the MacPitts

.mac program and are placed around the chip in the order

specified in the program starting in the upper lefthand

15
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Hauenstein adder [Ref. 5] along with a tutorial on Crystal.

Design errors that have been found in MacPitts designs are

detailed in Chapter V. Tutorial material on the MacPitts

interpreter is found in Appendix A.

14
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It was decided to use the MacPitts compiler to design

various adder circuits so that performance (chip size, power

and speed) comparisons could be made between the MacPitts

designs and a hand-crafted pipeline adder circuit designed

by Conradi and Hauenstein [Ref. 5]. Crystal, the VLSI

timing analysis program developed at the University of

California at Berkeley [Ref. 6], was used to analyze the

timing requirements of all circuits being compared. Since

Crystal had never been used at the Naval Postgraduate School

before, a procedure on how to use Crystal to analyze MacPitts

designs had to be developed. This required adapting the

basic Crystal Commands to the unconventional MacPitts

three-phase overlapping clock scheme.

The third research goal was to obtain a more complete

understanding and description of the MacPitts interpreter

than currently available in the literature. Reference 2

and reference 4 describe how to use the interpreter, but a

detailed description of the interpreter commands and error

statements and its capabilities and limitations is not

available.

Chapter II of this thesis describes the basic circuit

building blocks of the MacPitts compiler. The design of

several combinational and pipeline adder circuits is

presented in Chapter III. Chapter IV lists performance

comparisons between the MacPitts adders and the Conradi and

13
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description of the MacPitts language, which is used to write

the .mac program that contains a functional description of

the circuit to be designed by the compiler. Also, a

detailed procedure on how to write the .mac program is

given. Carlson also shows how to use the MacPitts inter-

preter to test the functional correctness of the .mac program

before the circuit design is performed by the compiler. In

addition, Carlson's thesis gives a detailed listing of the

activities in the MacPitts design cycle used to design VLSI

circuits. The design cycle includes generating the .mac

program, submitting the .mac program to the compiler for

circuit design and performing a design rule check and

functional event simulation on the designed circuit.

Since a good understanding of how to use the MacPitts

silicon compiler to design VLSI circuits was obtained by

Carlson [Ref. 4] it was decided that the next logical step

was to learn more about the MacPitts architecture and to

make some performance comparisons between various MacPitts

and hand-crafted designs. The first goal of this thesis

research was to determine what basic building blocks the

compiler used to design VLSI circuits and how these building

blocks are used to implement different circuits. Also, an

understanding of how the statements in the .mac program

determine the structure of the MacPitts designed circuit was

desired.

12
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D. THE SEQUENCER

* The sequencer is a mini data-path and is placed on the

chip between the data-path and the flags block. If the .mac

program contains a process whose value depends on the system

state, a sequencer is placed on the chip to control the

system state of the chip. The sequencer usually contains

registers to store the current system state. Every clocki. cycle the current system state is transferred to the

Weinberger array from the registers and then the new system

K. state is transferred from the Weinberger array to the

sequencer for storage. Additional details about the

sequencer are given in [Refs. 3, 7 and 81.

E. THE FLAGS BLOCK

* Flags have a similar function to registers, but they

store only one-bit of data from the Weinberger array. Flags

also have a master-slave flip-flop structure but extra

inverters are used in the flags block to drive the clock

signals because there may be as many as twenty or thirty

flags in the flags block (see Figure 2.8). The enable line

of a flag performs the same function as the enable line of a

register. Flags are placed side by side with the flags block

increasing in width as more flags are needed. The rightmost

structures in the flags block are the six inverters used to

drive the three clock lines (see Figure 2.9). The leftmost

flag in the flags block is the first flag encountered by the

26
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compiler in the "always" or "process" section of the .mac

program. Each subsequent flag encountered by the compiler is

placed on the right of the previous flag. Since the flags

block cannot expand in the vertical direction there is

wasted space on the chip above the flags block if the

data-path or sequencer is taller than the flags block. Also,

if the .mac program requires a large number of flags the

width of the flags block may make the dimension of the chip

exceed the MOSIS chip size constraints.

F. THE WEINBERGER ARRAY

The Weinberger array, or control unit, or a MacPitts

designed chip is the unit where all chip control signals are

generated and bit size boolean functions are performed. All

inputs and outputs to the array are routed to the top of the

array. Input and output signal lines are routed around the

left side of the array and then to the top.

The data lines connecting the Weinberger array to the

data-path, sequencer, and flags block are called the "river".

The algorithm that routes the "river" does not allow the

data lines to cross each other so the left-to-right ordering

of the functions performed in the array is determined by the

left-to-right ordering of the data transferred from the
A

data-path, sequencer and flags block to the array. Array

functions that use data from the data-path are placed in the

left section of the array, array functions that use data from

29
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the sequencer are placed in the center section of the array

and array functions that use data from the flags block are

placed in the right section of the array. Since no data

lines in the "river" can cross each other data that is

transferred between the data-path, sequencer or flags block

must pass through the array even though no function is

performed on the data in the array.

The Weinberger array consists of a regular structure of

* NOR gates having arbitrary numbers of inputs. The pull-up

transistors of the NOR gates are connected to Vdd at the

bottom of the array and run vertically the full height of

the array. Vertical ground wires run parallel to the pull-up

transistor lines from the ground bus at the top of the

array. Inputs to the NOR gates run horizontally through the

- - array and form pull-down transistors when connected to ground

* .and the NOR gate output line. The NOR gate output lines also

run horizontally through the array and may be used as input

* lines to other NOR gates or routed to a flag or signal output

pad. As more NOR gates are added to the Weinberger array or

more inputs or outputs are added to each gate the array

increases in width. The height of the array is determined

* by the number of horizontal interconnections between the NOR

gates [Ref. 7].

Eight different boolean functions are implemented in the

Weinberger array, all with NOR gates: NOR, AND, NAND, OR,

EQU, XOR, parity and NOT [Ref. 2]. Figure 2.10 shows how an

30
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XOR function is implemented using NOR gates. The stick

diagram of Figure 2.11 shows the Weinberger array implemen-

tation of the XOR function from Figure 2.10 and Figure 2.12

shows an actual Weinberger array layout of this function.

The PLA and Weinberger array structures are very

similar but there are several important differences. First,

the PLA has only two levels of logic, the AND and the OR

planes. The Weinberger array can have an arbitrary NOR gate

depth. Although a PLA can implement the same functions

performed in the Weinberger array the MacPitts designers

found that when a boolean function was normalized in the

sum-of-products form the Weinberger array's NOR gate depth

allowed a much more compact structure than the PLA's

[Ref. 31. Another difference is that the complement of each

input signal does not have to be available at the input of

the Weinberger array as a PLA requires. The complements of

array inputs are generated in the array if they are required.

It has been found that the generation of the Weinberger

array usually takes from 90% - 95% of the computer's

compilation time in generating a MacPitts design. When an

8-bit 5-stage pipeline adder was designed using the

MacPitts compiler 162 CPU minutes (about eight hours on a

lightly loaded computer system) were required to complete this

design. Most of this time was required to lay out the 228

vertical control columns (the number of array inputs and

32
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outputs plus the number of nor gates in the array) and the

81 horizontal control tracks (the number of nor gate inputs

and outputs in the array). When a 16-bit 5-stage pipeline

adder design was attempted which contained 435 control

columns and 157 control tracks the design process was killed

after 4800 CPU minutes (four days) were spent designing the

Weinberger array. When the size of the Weinberger array of a

4-bit 5-stage pipeline adder (126 columsn and 43 tracks) is

compared with the size of the 8-bit and 16-bit adders it

can be seen that the Weinberger array becomes nearly four

times larger and more complex in this 5-stage pipeline design

when the size of the data word is doubled.

3
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III. THE DESIGN OF ADDER CIRCUITS

A. COMBINATIONAL ADDERS

The design of combinational adder circuits with the

MacPitts compiler is more straightforward than the design of

pipeline adder circuits. The output sum of a combinational

adder depends only on the present inputs to the circuit.

Unfortunately, several compiler design constraints cause the

combinational adder design to be more complicated than

necessary.

The compiler adds two input vectors (ain and bin) in

the data-path using the ripple carry full adder circuit

shown in Figure 2.5. The first problem occurs when trying to

add the input carry (cin) to the first bit of ain and bin.

Since cin is a one-bit sized data element and the data-path

can only manipulate word size data elements cin must be

converted to a word sized data element. This requires

additional circuitry in the data-path and the Weinberger

array and also additional statements in the MacPitts .mac

program.

A second problem occurs because the MacPitts language

in which the .mac program is written allows only two

variables in the addition function [Ref. 2]. All MacPitts

functions are limited to one or two variables. It is assumed

that the number of variables in a MacPitts function was
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limited by the compiler designers to simplify the design of

the compiler. The simple LISP addition function of

(+ amn bin cmn)

is accomplished in MacPitts with the more complicatedI

funct ion

(+ amn (-I bin cmn)).

This embedded addition causes two full adder circuits to be

connected in cascade. In the first full adder bin is added

to cmn and this sum is added to amn in the second full adder.

A third problem is that the carry in and carry out

lines of the full adder cannot be addressed by the

programmer. They are only used to ripple the carry bits

between full adder stages. The carry in of the bit 0 full

adder is connected to ground; the carry out of the last

full adder stage is not connected to anything. If a chip

carry out is desired it must be generated by additional

circuitry in the Weinberger array.

Figure 3.1 shows a block diagram of the data-path for a

two bit combinational adder circuit with carry in. In

Figure 3.2 the .mac program for a 4-bit combinational adder

is shown. Lines 14 and 15 convert the carry in signal to a

word size data element. The least significant bit of the

carry in word is set to 1 or 0 depending on the value of the

carry in signal. All other bits of the carry in word are

37
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I ;adder 4-bit combinational

2 (program add 4
, (def I ground)
4 (def ain port input (2 3 4 5)) ;input vector
5 (def bin port input (6 7 8 9)) ;input vector
6 (def res port output (10 11 12 13)) ;output vector
7 (def cin signal input 14) ;carry in
8 (def carry port internal)

9 (def 15 phial
10 (def 16 phib)
II (def 17 phic)
12 (def 18 power)
13 (always
14 (cond (cin (setq carry 1))
15 (t (setq carry 0)))
16 (setq res (-t ain (- bin carry)))))

Figure 3.2. 4-Bit Combinational Adder .mac Program

39
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94 (setq c5 (or (bit, 5 g3) (and (bit 4 g3) (bit 5 p3))

95 (and bc3 (bit 4 p3 ) (bit 5 p3))))

96 ( etq c6 (or (bit 6 g3 ) (and (bit 5 g3) (bit 6 p3))

97 (and (bit 4 g3 ) (bit 5 p3) (bit 6 p3))
98 (and bc3 (bit 4 1,3) (bit 5 p3) (bit 6 p3))))

99 (setq c7 bc7)
100 (setq p 4 p 3 )

101 (setq carry4 carry3))

102
103 'Stage Five
104
105 (par (setq addO (xor (bit 0 p4) carr)4))

106 (setq addI (xor (bit I p4) cO))

107 (setq add2 (xor (bit 2 p4) cl))

108 (setq add3 (xor (bit 3 p4) c2))

109 (setq add4 (xor (bit 4 p4) c3))

110 (setq add5 (xor (bit 5 p4) c4))

III (setq add6 (xor (bit 6 p4) c5))

112 (setq add7 (xor (bit 7 p4) c6))

113 (setq carryout c7)

114 (setq suinO addO)
115 (setq sumI addl)

116 (setq suni2 add2)

117 (setq sum3 add3)

118 (setq surn4 add4)

119 (setq sum5 add5)
120 (setq sum6 add6)
121 (setq sum7 add7)
122 (setq cout carr)out))))

Figure 3.8. MacPitts .mac Program for a 8-Bit 5-Stage
Pipel ine Adder Circuit (cont.)
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48 (def add2 flag)

49 (def add3 flag)
50 (der add4 flag)
51 (def adds flag)
52 (,ef addB flag)
53 (def add7 flag)
54 (alays
i55;
56 Stage One

57,

58 (par (setq pl (word-xor ain bin))
59 (setq gl (word-and ain bin))
60 (cond (cin (setq carryl t))
61 (t (setq carryl f))))
62 ;
63 Stage Two
64 ;
65 (par (setq bpO (and (bit 3 pl) (bit 2 pl) (bit 1 p1) (bit 0 pl)))
66 (setq bpl (and (bit 7 pl) (bit 6 pl) (bit 5 pl) (bit 4 pl)))
67 (setq bgO (or (bit 3 g1) (and (bit 2 gI) (bit 3 p1))
68 (and (bit I gl) (bit 2 pl) (bit 3 pl))

69 (and (bit 0 gl) (bit 1 pl) (bit 2 pl) (bit 3 pl)))

70 (setq bgl (or (bit 7 gl) (and (bit 6 gl) (bit 7 pi))
71 (and (bit 5 g1) (bit 6 pl) (bit 7 pl))

72 (and (bit 4 gl) (bit 5 pl) (bit 6 pl) (bit 7 pl))))
73 (setq p2 pl)

74 (setq g2 gI)
75 (setq carr)2 carryl))
76;
77 Stage Three
78;

79 (par (setq bc3 (or bgO (and carry2 bpO)))
80 (setq bc7 (or bgl (and bgO bpl) (and carry2 bp0 bpl)))
81 (setq p3 p2)
82 (setq g3 g2)

83 (setq carry3 carry2))
84;
85 Stage Four

86 ;
87 (par (qetq cO (or (bit 0 g3) (and carry3 (bit 0 p3))))
88 (setq cI (or (bit I g3) (and (bit 0 g3) (bit I 1,3))
89 (and carr)3 (bit 0 p3) (bit 1 p3))))
90 (setq c2 (or (bit 2 g3) (and (bit 1 g3) (bit 2 p3))
91 land carry3 (bit 0 p3) (bit I p3) (bit 2 p3))))
92 (setq c3 bc3)
93 (setq c4 (or (bit 4 g3) (and bc3 (bit 4 g3))))

Figure 3.8. MacPitts .mac Program for a 8-Bit 5-Stage

Pipeline Adder Circuit (cont.)
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1 (program addp 8
2 ;This adder uses block carry lookahead (BCLA) addition
3 (def I ground)
4 (def ain port input (2 3 4 5 6 7 8 9)) ;input vector
5 (def bin port input (10 11 12 13 14 15 16 17)) ;input vector
6 (def cin signal input 18) ;carry into chip
7 (def sum7 signal output 19) :bit 7 sum

8 (def suin6 signal output 20) ;bit 6 sum
9 (def sum5 signal output 21) ;bit 5 sum

10 (def surn4 signal output 22) -bit 4 sum
11 (def sum3 signal output 23) ;bit 3 sum
12 (def suiri2 signal output 24) ;bit 2 sum
13 (def sumI signal output 25) ;bit I sum
14 (def suinO signal output 26) ;bit 0 sum
15 (def cout signal output 27) ;carry out of chip
16 (def 28 phia) ;clock phases
17 (def 29 phib)
18 (def 30 phic)
19 (def 31 power)
20 (def p1 register) ;carry propagate-stage one
21 (def p2 register) -stage two
22 (def p3 register) -stage three

23 (def p4 register) -stage four
24 (def gI register) ;carry generate-stage one
25 (def g2 register) -stage two
26 (def g3 register) -stage three
27 (der bpO flag) -block carry propagate
28 (def bpl flag)
29 (def bgO flag) ;block carry generate
30 (def bgl flag)
31 (def bc3 flag) ;block carry
32 (def bc7 flag)
33 (def carry] flag) ;cin-stage one
34 (def carry2 flag) -stage two
35 (def carry3 flag) -stage three
36 (def carry4 flag) -stage four
37 (def cO flag) ;bit 0 carry
38 (def ci flag) ;bit I carry
39 (def c2 flag) ;bit 2 carry
40 (def c3 flag) ,bit 3 carry
41 (def c4 flag) ;bit 4 carry
42 (def c5 flag) ;bit 5 carry

43 Idef c6 flag) ;bit 6 carry
44 (def c7 flag) bit 7 carry
45 (def carryout flag) ;cout flag
46 (def addO flag) ;bit sum flags
47 (def addi flag)

Figure 3.8. MacPitts .mac Program for a 6-Jit o-Stage
Pipeline Adder Circuit
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8-bit adder is shown in Figure 3.8 and the circuit layout is

shown in Figure 3.9. The block diagram of the 8-bit adder

would be the same as the block diagram of the 4-bit adder

shown in Figure 3.7. The size of the 8-bit adder circuit is

6.650mm x 4.358mm. The data-path is twice as tall, the flags

block is almost twice as long and the area of the Weinberger

array is four times larger in the 8-bit adder than in the

4-bit adder.

An attempt was made to design a 16-bit 5-stage pipeline

adder with the MacPitts compiler. The compiler was able to

design all but the large Weinberger array which is four

times larger than the 8-bit adder array. The program that

designs the Weinberger array uses a recursive algorithm and

the depth of recursion is limited by the amount of memory

available to the LISP compiler. Since the array of the

16-bit adder circuit is so large the limit of the depth of

recursion was reached.

The 16-bit pipeline adder contains four carry-look-ahead

blocks. When the .mac program of the 16-bit adder (Figure

3.10) is compared to the .mac programs of the 8-bit and

4-bit adders (Figures 3.6 and 3.9) the programs are

essentially the same except for additional statements in

stages 2 through 5 due to the larger 16-bit data word and

due to the additional carry-look-ahead blocks.
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shown in lines 43 and 44, are performed with the word-xor

and the word-and functions in the data-path. All functions

in stages 2 thru 5 require the manipulation of bit size data

elements. These functions are performed in a large

Weinberger array. Registers and flags are used to store the

input and output data of each stage. It takes less circuitry

(and fewer statements in the .mac program) to manipulate

word size data elements and store them in registers than to

manipulate bit size data elements and store them in flags.

Since there is no MacPitts function to set the bits of a

word to a particular value the bit sized output data

elements of stages 2 through 4 cannot be combined into words

and stored in registers. The output data of stages 2 through

4 must be stored in flags and this requires a very large

flags block.

A pipeline circuit designed by the MacPitts compiler

does not perform like a standard pipeline circuit as

described in [Ref. 9] because the input data of each stage

is valid before the start of the clock period. When data is

stored in a MacPitts register or flag the data is valid on

the register or flag output line before the end of the clock

period (see Figures 2.2, 2.7, and 2.8). The data then starts

to propagate through the combinational logic of the next

stage before the start of the next clock period. During the

next clock period the data will continue to propagate

through the stage combinational logic during the first two

48
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43 (par (setq p1 (word-xor ain bin))

44 (setq gi (word-and ain bin))
45 (cond (cin (setq carryl t))
46 (t (setq carry f))))
47

48 ;Stage Two
49;
50 (par (setq bp0 (and (bit 3 pl) (bit 2 pl) (bit 1 pl) (bit 0 pl)))

51 (setq bg0 (or (bit 3 gl) (and (bit 2 gl) (bit 3 pl))

52 (and (bit 1 gl) (bit 2 pl) (bit 3 pl))
53 (and (bit 0 gl) (bit 1 pl) (bit 2 pl) (bit 3 pl))))
54 (setq p 2 pl)

55 (setq g2 gl)
56 (setq carry2 carryl))
57

58 ;Stage Three
59;
60 (par (setq bc3 (or bg0 (and carry2 bpO)))
61 (setq p3 p2 )
62 (setq g3 g2)
63 (setq carry3 carry2))

64
65 ;Stage Four
66;
67 (par (setq cO (or (bit 0 g3) (and carry3 (bit 0 p3))))
88 (setq cl (or (bit 1 g3) (and (bit 0 g3) (bit I p3))

69 (and carry3 (bit 0 p3) (bit I p3))))
70 (setq c2 (or (bit 2 g3) (and (bit I g3) (bit 2 p3))
71 (and carry3 (bit 0 p3) (bit 1 p3) (bit 2 p3))))
72 (setq p4 p3)
73 (setq c3 bc3)
74 (setq carry4 carr. 3))
75

76 ;Stage Five
77

78 (par (setq addO (xor (bit 0 p4) carry4))
79 (setq addI (xor (bit 1 p4) cO))
80 (setq add2 (xor (bit 2 p4) cl))

81 (setq add3 (xor (bit 3 p4) c2))
82 (setq carryout c3)
83 (setq sumO addO)

84 (setq sumi addi)
85 (setq sum2 add2)

86 (setq sum3 add3)

87 (setq cout carryout))))

Figure 3.5. MacPitts .mac Program for a 4-Bit 5-Stage

Pipeline Adder Circuit (cont.)
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-(program addp 4

• r2 ,Thir adder uses block carry, Itukahead (BCLA) addition
3 (de I ground)

4 (der ain port input (2 3 4 5)) ;input vector
5 (def bin port input (6 7 8 9)) -input vector
6 (defcin signal input 10) ;carry into chip
7 (def sum3 signal output 11) ;bit 3 sum
8 (deC sum2 signal output 12) ;bit 2 sum
9 (deC suml signal output 13) ;bit 1 sum
10 (deC sumO signal output 14) ;bit 0 sum
11 (def cout signal output 15) ;carry out of chip
12 (def 16 phia) ;clock phases
13 (def 17 phib)
14 (def 18 phic)
15 (def 19 power)
16 (deC p1 register) ;carry propagate-stage one
17 (def p2 register) -stage two
18 (def p3 register) -stage three
19 (def p4 register) -stage four
20 (def gI register) ;carry generate-stage one
21 (deC g2 register) -stage two
22 (def g3 register) -stage three
23 (deC bpO flag) ;block carry propagate
24 (def bgO flag) ;block carry generate

25 (def bc3 flag) ;block carry
26 (def carry! flag) ;cin-stage one
27 (def carry2 flag) ; -stage two
28 (def carry3 flag) ; -stage three
29 (deC carry4 flag) ; -stage four
30 (der cO flag) ;bit 0 carry
31 (def cl flag) ;bit I carry
32 (def c2 flag) ;bit 2 carry
33 (def c3 flag) ;bit 3 carry
34 (def carryout flag) ;cout flag
35 (deC addO flag) ;bit sum flags
36 (def addI flag)
37 (def add2 flag)
38 (deC adds flag)
39 (always
4C ;.

41 'Stage One
42

Figure 3.5. MacPitts .mac Program for a 4-Bit 5-Stage
Pipeline Adder Circuit
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C 2,6,10,14=G26,10,14 +1,5,9,13 P2,6,10,14

+GP p0,4,8,12 1,5,9,13 2,6,10,14

-4BC P P P-1,3V7,110,4,8,12 1,5,9,13 2,6,10,14

(Note that C0,4,8,12 means C. for i=O,4,8,12.)

5. Calculate the sum bits (Si).

Si = (Ai)XOR(Bi)XOR(Ci)
1 1 i-i

The Conradi and Hauenstein [Ref. 5] pipeline adder had

only four stages. Stages 1 and 2 were combined by writing

the equations describing the BG.'s and BP.'s in terms of the
J 3

input operands instead of in terms of the G.'s and P.'s. The
l 1

MacPitts pipeline adders contain five stages because the

increased stage propagation delay caused by combining stages

1 and 2 could slow the clock speed of the circuit and the

fastest possible clock speed is desired.

Figure 3.5 shows the .mac program for a 4-bit 5-stage

pipeline adder circuit. The carry in of the chip is used in

all stages of the pipeline so a separate storage location is

required for each stage as shown in lines 26 thru 29. The

carry propagate and carry generate calculated in stage 1 are

used in stages 4 and 5, respectively, so multiple storage

locations are also used for these quantities. The

calculations of the carry generate and carry propagate,

45



2. Calculate one block generate (BG. and block propagate

(BP) for every four bits of the addition operands

from the G Is and P.'s.

BP.= P i3P i++ P i j0,12,9.. i

BG. G. G. +P +G P. P. +G.P. p P.
j i+3+ i+2+ i+ 3  1+1 i+E2 i+3 1 1+1 i+2 i+3

j=0,1,2,'3 .... ; i=4j

3. Calculate the block carry (BC1) for each carry block.

BC =BG +C_ BP3 0 -1 0

BC 7 BG 1+BG 0BP 1 +C_ BP 0BP1

BC =BG +BG BP +BG BPBP +C BP BP BP
11 2 1 2 0 1 2 -1 0 1 2

BC BG= B BP +BG BP BP+BG BP BP BP+C BP BPBP BP
15 B 3 +B 2  3 1 2 3 0 1 2 3 -1 0 1 2 3

4. Calculate the look-ahead-carry (C. for each bit of the

operands.

C G +BC P

-1,3,7,11 0,4,8,12 1,5,9,13
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combinational logic of the combinational circuit the

pipeline circuit has a shorter logic propagation delay

during each clock period. This allows the pipeline circuit

to operate at a faster clock speed and higher data output

rate (throughput) than the combinational circuit. A

disadvantage of a pipeline circuit is the latency caused by

%9.1

the time that is required to fill and empty the pipeline.

Reference 9 should be consulted for more information on

pipelining.

There are many different algorithms that can be used to

design a pipeline adder circuit. The block carry-look-ahead

(BLCA) addition algorithm [Ref. 10] was used so that a

comparison could be made between a MacPitts designed

pipeline adder circuit and the hand-crafted pipeline adder

circuit designed by Conradi and Hauenstein [Ref. 5].

Equations 6.1 thru 6.12 of [Ref. 5] are used to implement

the BCLA addition algorithm. As described in [Ref. 5], the

BLCA pipeline adder can be conveniently divided into the

following five stages:

1. Calculate the carry generate (G. and the carry

propagate (P from the input addition operands.

G. =A.B.

pi (A. )XOR(B
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GNDI PIN IBIN

Junn

Vdd CLOCK CIN jRES

*Figure 3.4. MacPitts Design of a 8-Bit Combinational Adder
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Figure 3.3. MacPitts Design of a 4-Bit Combinational Adder
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set to 0 regardless of the value of the carry in signal.

This can be seen on the left side of Figure 3.1. Figure 3.3

and 3.4 show the 4 micron MacPitts designs for a 4-bit and an

8-bit combinational adder. The size of the 4-bit adder is

2.292mm x 2.398mm and the size of the 8-bit adder is 3.508mm

x 3.614mm. As shown, the size of the chip frame is larger

than required by the circuitry inside the chip. A larger

frame is needed because pads can be placed only on three

sides of the frame. The frame could be smaller and the chip

area could be more effectively used if pads were placed on

all four sides of the frame. Both of these MacPitts designs

produced correct simulations when simulated by the event

driven switch level simulator, esim, using the procedure

outlined in [Ref. 4].

B. PIPELINE ADDERS

The purpose of pipelining a circuit is to increase the

throughput of the circuit. The combinational logic of a

circuit is partitioned into several smaller functional units

or stages and storage registers are placed between each

stage. During each clock period data is clocked from the

input storage register of each stage through the

combinational logic of the stage and into the output storage

register of the stage. Also, during each clock period a

result exits the pipeline. Since the combinational logic in

each stage of the pipeline circuit is less than the total

40
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I ( program a(Id p 16
2 .This adder u-e. block carr) l.okahead (BCLA) addition
3 (def I ground)
4 (de ain port input (2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17))
5 (def bin port input (1,S 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33))
6 (deC cin sigIkal input 34)
7 (deC sum 15 ,ignal output 351
8 (deC suml4 signal output 36)
9 (deC surnil3 signal output 37)
10 (de sum12 signal output 38)
11 (def sum I1 signal output 39)
12 (deC sumlO signal output 40)
13 (def surng signal output 41)
14 (def sum8 signal output 42)
15 (deC sum7 signal output 43)
16 (deC sum6 signal output 44)
17 (deC sum5 signal output 45)
18 (def sum4 signal oiwput 46)
19 (deC sum3 signal output 47)
20 (def sum2 signal output 48)
21 (deC suml signal output 49)
22 (deC sumO signal output 50)
23 (der cout signal output 51)
24 (deC 52 phia)
25 (de 53 phib)
26 (de 54 phic)
27 (deC 55 power)
28 (deC pi register)
29 (def p2 register)
30 (def p3 register)
31 (deC p4 register)
32 (deC gi register)
33 (deC g2 register)
34 (deC g3 register)
35 (def bp0 flag)
36 (def bpl flag)
37 (de bp2 flag)
38 (def bp3 flag)
39 (deC bgf flag)
40 (def bgl flag)

Figure 3.10. MacPitts .mac Program for a 16-Bit

5-Stage Pipeline Adder Circuit
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41 (def bg2 flag)
42 (def bg3 flag)

43 (def bc3 fhg)
44 (def bc7 flag)
45 (deC bcII flag)
46~ (der ihcl fl ag)

47 (de carryl flag)
48 (def carry2 flag)
49 (def carr)3 flag)
50 (def carry4 flag)
51 (defrcO flag)
52 (de ci flag)
53 (deC c2 flag)
54 (def c3 flag)
55 (def c4 flag)
56 (deC c5 flag)
57 (deC c6 flag)
58 (def c7 flag)
59 (deC c8 flag)
60 (de c9 flag)
61 (def clO flag)

62 (def cii flag)
63 (de c12 flag)
64 (dercI 3 flag)
65 (der cl4 flag)
66 (def c5 flag)
67 (deC carryout flag)
68 (def addO flag)
69 (def addl flag)
70 (deC add2 flag)
71 (def add3 flag)
72 (def add4 flag)
73 (def add5 flag)
74 (def add6 flag)
75 (de add7 flag)

78 (deC add8 flag)
77 (deC add9 flag)
78 (def addlO nag)
79 (de addl1 flag)
80 (deC addl2 flag)

Figure 3.10. MacPitts .mac Program for a 16-Bit
5-Stage Pipeline Adder Circuit (cont.)
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81 (deC addi- nahg)
82 (def add 14 flag)
8 3 (deC add IS flag)
8.1 (aI~v
85
86 ;St age One

88 (par (setq pi (%%ord-xur amn bin))
89 (setq gI (wourd-and ami bitill
90 (cond (cin (seiq carryl t ))
91 (t (setq carrN I f))))C

93 -Stage Two

95 (par (set q bp0 (and (bit 3 p1I) (bit 2 p 1) (bit I p 1) (bit 0 p1)))
96 (selq bpl (and (bit 7 p1) (bit 6 p1) (bit 5 pi) (bit 4 p1)))

97 (setq bp2 (and (bit 11 p1) (bit 10 p1) (bit 9 p1) (bit 8 pi)))
98 (setq bp3 (and (bit 15 p1) (bit 14 p1) (bit 10. pi)
99 (bit 12 p1)))
100 (set q bg0 (or (bit 3 g1) (and (bit 2 gI) (bit 3 p1))
IM1 (and (bit I gi) (bit 2 p1) (bit 3 pi))
102 (and (bit 0 gI ) (bit I p1) (bit 2 pi) (bit 3 p1))))
1093 (setq bgl (or (bit 7 gi) (and (bit 6 gi) (bit 7 p1))
1094 (and (bit 5 g 1) (bit 6 p1) (bit 7 pi))
105 (and (bit 4 g I) (bit 5 p1j (bit 6 pl) (bit 7 p1))))
106 (setq bg2 (or (bit I1I g 1) (and (bit 10 gI) (bit 11 p1))
107 (and (bit 9 gl) (bit 10 p1) (bit 11 p1))
108 (and (bit 8 gi ) (bit 9 pi) (bit 10 p1) (bit 11 pi))))
109 (set q bg3 (or (bit 15 gi) (and (bit 14 gI) (bit 15 p1))

110 (and (bit 13 gi) (bit 14 p1) (bit 15 pi))3
III (and (bit 12 gi) (bit 13 p1) (bit 14 p1) (bit 15 p1))))
112 (,setq p2 p I)

113 (seq g2 g I)
114 isetq carry2 carryl1))
115
116 :Si age Three
117
I 18 (par (setq bc3 (or bg0 (arid carryN2 bpO)))
119 .eiq b(-7 (or hgl (and bg0 bpl) (and carry2 bp0 bpi)))
120 (set q 1w I I (or lig2 (a rid bgl 1 )12) (and bgO bp I bp2)

S

Figure 3.10. NMacPitts .mac Program for a 16-Bit
5-Stage Pipeline Adder Circuit (cont.)
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121 land carry2 bp0 bpI bp2)))
122 (seiq IBri (or bg3 (and bg2 bpS0) (and bgl hp2 bp3)
123 (and hg0 bpi bp2 bp)3) (aiid earn .2 bpti hpl brp2 bp3)))
124 (setq p3 p2)
120 (zetq g:, g2)
11.6 (setq carr,.3 carry2))
127
I2 VS Si age Four
129
130 (par (setq cd (or (bit 0 g3) (and carry3 (bit 0 p3))))
131 (setq cI (or (bit 1 g3) (and (bit 0 g3) (bit 1 p3))
12 (and carr3 (bit 0 l,3) (bit I p3))))
13u10 (setq c2 (or (bit 2 g3) (ard (bit I g3) (bit 2 p3))

% 1 '4 (and carryv* (bit. 0 p3) (bit I p3) (bit 2 p3))))
135 (setq 0S bc3)
136 (setq c4 (or (bit 4 g3) (and bc3 (bit 4 g3))))
137 (setq ce (or (bit 5 g3) (and (bit 4 g3) (bit 5 p3))
138 (and bc3 (bit 4 p3) (bit 5 p3))))
139 (:setq e6 (or (bit 6 g3) (and (bit 5 g3) (bit 6 p3))

*140 (and (bit 4 g3) (bit 5 p3) (bit 6 p3))
141 (and bc3 (bit 4 p) (bit 5 p3) (bit 6 p3))))
142 (setq r7 bc3)
143 (setq c4 (or (bit 8 g3) (and bc3 (bit 8 p3))))
144 (setq c9 (or (bit 9 g3) (and (bit 8 g3) (bit 9 p3))
145 (and bc7 (bit 4 p3) (bit 9 p3)l)
146 (setq cR0 (or (bit 10 g3) (and (bit 9 g3) (bit 10 p3))
147 (and (bit 8 g3) (bit 9 p3) (bit 10 p3))
148 (and be7 (bit 8 p3) (bit 9 p3) (bit 10 p3))))
149 (setq ell bell)
150 (setq c2 (or (bit 12 g3) (and beII (bit 12 p3))))
151 (setq 13 (or (bit 13 g3) (and (bit 12 g3) (bit 13 p3))
152 (and be7I (bit 12 p) (bit 13 p3))))
153 (setq elO (or (bit 14 g3) (and (bit 13 g3) (bit 14 p3))
154 (and (bit 12 g3) (bit 13 p3) (bit 14 p3))
155 (and bell (bit 12 p3) (bit i ps) (bit 14 p)M)
156 (setq c15 bell)
157 (setq p4 p3)
158 (setq carr 4 carry3))

Figure 3.10. MacPitts .mac Program for a 16-Bit
5-Stage Pipeline Adder Circuit (cont.)
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160 Stage Five
161 

b162 (par (setq addO (xor (bit 0 p4) carry4))
163 (setq addI (xor (bit I 1,4) cO))
164 (setq add2 (xor (bit 2 p4) cI))
S16 (.,etq add;' (xor (bit 3 1,4) c2))
166 (,et q add4 (xor (bit 4 p4) c3)
167 (.etq add5 (xor (bit 5 p4) c4))
1158 (,etq add6 (xor (bit (5 p4) c5))
169 (:,etq add7 (xor (bit 7 p4) c6))
170 (setq ad d (\or (bit 8 p4) c7))
171 (setq add9 (xor (bit 9 ,4) c8))
172 (setq addlO (xor (bit 10 p4) c9))
179 (setq addIl (xor (bit I1 p4) cl())
174 (setq addl2 (xor (bit 12 p4) cl1))
175 (setq add13 (xor (bit 13 p4) c12))
176 (setq add14 (xor (bit 14 p4) c13))
177 (setq add15 (xor (bit 15 p4) c14))
178 (setq carryout c15)
179 (setq sumO addo)
180 (setq sunil add 1)
181 (setq sum2 add2)
182 (setq sum3 add3)
183 (setq sum4 add4)
184 (setq sum5 add5)
185 (setq sum6 add6)
146 (setq sum7 add7)
187 (setq sum8 addS)
188 (setq sum9 add9)
189 (setq sum O addlO)
190 (setq sumlI add1l)
191 (setq sumrl2 add 12)

192 (setq suml3 addl3)
193 (setq suml4 addl4)
194 (setq sum15 add 15)

195 (setq cout carryout))))

Figure 3.10. MacPitts .mac Program for a 18-Bit
5-Stage Pipeline Adder Circuit (cont.)
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Initially, simulations on the 4-bit and 8-bit pipeline

adder circuits could not be performed due to numerous wiring

and alignment errors in the MacPitts designs. These errors

are discussed in Chapter V of this thesis. After all of the

wiring and alignment errors were corrected the two adders

produced correct simulations using esim.
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IV. DESIGN PERFORMANCE COMPARISONS

A. TIMING ANALYSIS USING CRYSTAL

1. Introduction

Crystal is a VLSI circuit delay analysis program

developed at the University of California at Berkeley. The

slowest paths in the circuit are determined by Crystal and

* this information can be used to calculate the maximum clock

speed of the circuit. Version 2 of Crystal found in the

berk85 VLSI design tools available on the UNIX VAX computer

system was used for all timing and delay analysis.

Crystal reads circuit description information from a

.sim file created by the circuit extractor program Mextra

and then accepts commands from the programmer from the

terminal keyboard. There are seven categories of Crystal

commands and they must appear in the following order when a

timing analysis is performed: model commands, circuit

commands, dynamic node commands, check commands, setup commands,

delay commands and miscellaneous commands. References 6

and 11 should be consulted for a complete listing of all

Crystal commands and their use. Output from Crystal is

written on the terminal screen and can be stored in a file

if the UNIX "script" command is executed before the timing

analysis is started.
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2. Combinational Circuits

a. Performing a Delay Analysis

Combinational circuits are the easiest circuits

to analyze using Crystal. First, all input and output pads

should be labeled using the VLSI circuit editor Caesar. The

label can be any combination of distinctive ASCII characters

except space, tab, newline, double quote, comma, semi-colon

and parenthesis and must not start or end with a number.

Next a .sim file is created using Mextra with a -o option.

Only four commands: "inputs", "outputs", "delay" and

"critical" are necessary to analyze the circuit. The

commands "inputs" and "outputs" are used to identify the

input and output signals of the combinational circuit.

Delay commands are used to tell Crystal when input signals

change value [Ref. 6]. The form of the delay command is:

delay (signal name) tr tf

where tr is the time that the signal will rise to 1 and tf

is the time that the signal will fall to 0. An example of a

delay command is:

delay ain 3 0

This delay command specifies that the time that ain will

rise is 3ns and the time that ain will fall is Ons. This

means that ain is initially set to 0 and will rise to 1 3ns

later. If a negative time is used in a delay statement a
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transition of that signal will not occur after time 0. This

allows the programmer to have input signals stable at the

start of the timing analysis. The command "critical" directs

Crystal to calculate the slowest path in the circuit.

Two other commands, "check" and "clear", may also

be useful. The check command performs a static electrical

check on the circuit. Information about nodes with no

transistors connected to them, nodes that are not driven,

nodes that don't drive anything, transistors that are

permanently forced off, transistors connecting Vdd and GND,

and transistors that are bidirectional is printed to the

screen [Ref. 11]. All of this information, except for the

information on the bidirectional transistors, is not very

useful in a Macpitts generated circuit. This is because

when the MacPitts silicon compiler does not use part of an

organelle in a chip design the unused circuitry is left in

the design resulting in improperly connected nodes and

transistors. A bidirectional transistor is a transistor for

which Crystal cannot determine the direction of signal flow

within the transistor. To prevent Crystal from calculating

circuit delays along impossible paths, bidirectional

transistors must be labeled to show signal directions. (See

paragraph 3.a. below for directions on how to label

bidirectional transistors.)

The command "clear" is used to clear all previous

delay information and critical calculations from Crystal.
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Information on inputs and outputs is not affected. When a

clear command is used new timing calculations can be made

based on new delay commands for the same circuit.

Figure 4.1 shows the sequence of commands used

to perform a timing analysis on a 1-bit combinational adder

circuit. A check for bidirectional transistors was

previously performed and none were found in this circuit.

Line 2 shows the command used to invoke Crystal and lines 6

and 8 identify the circuit inputs and outputs. The Crystal

output lines that are enclosed in brackets on lines 5 and 7

indicate that Crystal has completed execution of the

previous commands. Crystal outputs a line in brackets after

the execution of every command. In lines 10, 16 and 19 the

two input bits, ain and bin, and the input carry bit, cin,

are set to 1, 0 and 1, respectively, with delay commands. In

lines 14, 17 and 20 Crystal indicates the number of stages .1
that had to be examined to determine the timeing delay for

each signal. After the delay commands, the critical command

is given in line 22. Lines 23 through 55 shows the time

delay through the critical path in the circuit. Each node

that is in the critical path is identified with the time

that it is driven. In this case the critical path started at

input pad bin, goes through the combinational logic in the

data-path and then ends at the output pad res 198.12ns later

(see Figure 4.2).
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I C/ script
2 , crvual& addcl.sim
3 Crystal, v 2
4 build addcl.sim
5 (1:00t.711 0:00. 2s 30k.
6 inputs &M bin cin
7 10:Otj.tu 0:00.Os 39k
8 Out puts res

9 '0-00 Ou O:00.Os 39k'
10 :delay amn 0 -1
I I Marking transistor flow...
12 Setting Vdd to I ...
13 Setting GND to 0 ...
14 (28 stages examined.)
15 0O:00.2u 0:00.1s 48ki
16 :delay bin -1 0
17 (41 stages examined.)
18 :0:00.lu 0:00.1s 54k]
19 :delay cin 0 -1
20 (26 stages examined.)
21 10:00.Ou 0:00.Os 54kj
22 :critical
23 Node res is driven high at 198.12ns
24 ... through fet at (885, 525) to Vdd after
25 342 is driven high at 189.3 Ins
26 ... through fet at (870, 457) to Vdd after
27 357 is driven low at 179.77ns
28 ... through ret at (849, 505) to GND after
29 139 is driven high at 17l.36ns
30 .. through fet at (730, 387) to Vdd after
31 258 is driven low at 85.7Ons
32 .. through ret at (668, 381) to 233
33 ... through ret at (668, 378) to GND after
34 221 is driven high at 81.04ns
35 ... through fet, at (623, 385) to Vdd after
36 240 is driven low at 72.3lns
37 ... through fet at (561, 379) to 225
38 ... through ret at (561, 374) to CND after
39 171 is driven high at 66.64ns
40 ... through fet at (454, 387) to Vdd after
41 255 is driven low at 48.79ns
42 ... through fet, at (392, 381) to 231
43 ... through fet at (392, 376) to GIND after
44 219 is driven high at 44.l3ns
45 ... through fet at (347, 385) to Vdd after
46 237 is driven low at 35.35ns

Figure 4.1. Crystal Delay Analysis of a 1-Bit
Combinational Adder
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47 ... through fet at (285, 379) to 223
48 ... through fet at (281, 374) to GND after

49 141 is driven high at 30.53ns
50 .. through fei at (264, 381) to Vdd after
51 119 is driven low~ at 13.17ns
52 -through fet at (474. 603) to GND after
53 401 is driven high at 8.66ns
54 .. through fet at (518. 593) to Vdd after
55 bin is driven low at 0.O0ns
56 0.0. 1 u 0. 00 2s 5 .1k
57 clear
58 10:00.Ou 0:00.Os 54k"
59 delay amn -1 0
60 Marking transistor flow...
61 Setting V~dd to 1 ...
62 Setting GND to 0...
63 (26 stages examined.)
64 J0:00.lu 0:00.1s 60ki
65 :delay bin 0 -1
66 (52 stages examined.)
67 O0:00.lu 0:00.1s 63ki
68 :delay cin -1 0
69 (61 stages examined.)
70 10:00.2u 0;00.Os 63kj
71 .Critical
72 Node res is driven high at 226.63ns
73 ... through fet at (885, 525) to Vdd after
74 342 is driven high at 217.82ns
75 ... through fet at (870, 457) to Vdd after
76 357 is driven low at 208.28ns
77 ... through fet at (849, 505) to GND after
78 139 is driven high at 199.87ns
79 . .. through fet at (730, 387) to Vdd after
80 258 is driven low at 114.2lns
81 .. through fet at (668, 381) to 233
82 ... through fet at (668, 376) to GND after
83 221 is driven high at 109.55ns
84 ... through fet at (623, 385) to Vdd after
85 240 is driven low at 100.82ns
86 ... through tet at (561, 379) to 225
87 ... through fet at (561, 374) to OND after
88 171 is driven high at 95.15ns
89 . .. through fet at (454, 387) to Vdd after
90 255 is driven low at 77.30ns

Figure 4.1. Crystal Delay Analysis of a 1-Bit

"I

Combinational Adder (cont.)
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91 ... through fet at (392, 381) to 231
92 ... through fet at (392, 376) to GND after
93 219 is driven high at 72.64ns
94 ... through fet at (347, 385) to Vdd after ,
95 237 is driven low at 63.86ns
96 ... through fet at (285, 379) to 223
97 ... through fet at (281. 371) to (,\I) after
98 141 is driven high at 59.04ns
99 ... through fet at (264, 381) to Vdd after
100 170 is driven low at 42.13ns
101 ... through fet at (188. 372) to GND after
102 63 is driven high at 28.83ns
103 ...through et at (182. 189) to Vdd after
104 36 is driven low at 1.5.5211s
105 ... through fet at (885. 364) to GND after
106 148 is driven high at 8 65ns
107 .. through ret at (875. 48) to Vdd after
108 cin is driven low at 0.O0ns
109 quit

Figure 4.1. Crystal Delay Analysis of a 1-Bit
Combinational Adder (cont.)
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When Crystal does a timing analysis of a

clocked circuit it is assumed that each clock phase (or

clock period segment in the case of a MacPitts design) is

long enough for the combinational logic in the circuit to

settle. But in a MacPitts circuit the first and second

clock period segments, tl and t2, are used for the settling

time of the combinational logic. Crystal will give an

overly long delay for tl of a MacPitts design because all of

the logic propagation delay will be assigned to this section.

Another problem is that it will not be

possible to determine the logic delay of any stage in the

pipeline if the delay of the clock phase signals phia, phib

and phic getting to the registers or flags is longer than

the stage logic delays. This is because Crystal only gives

the timing delay for the critical or longest path in the

circuit.

The problems are solved by dividing the

timing analysis of the Macpitts pipeline design into two

parts. First the clocked registers and flags of the chip

are analyzed for the timing delay of the input clock phase

signals and then the combinational logic in each pipeline

stage is analyzed to determine the slowest stage in the

pipeline system.

(2) Register and Flag Delays. The first step

in performing a timing analysis of the clocked registers and

flags is to edit the MacPitts circuit using Caesar. All
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placed on each transistor on the side of the gate that

shares the electrical connection to the other transistors. L

Bidirectional transistors that are not electrically

connected should have different labels.

Figure 4.5 shows the stipple plot of a register

cell that has five bidirectional transistors labeled with

transistor attributes. The bidirectional transistor labeled

Cr:A$ is not electrically connected to any other bidirectional

transistor. The source side of the gate has been labeled.

The two transistors labeled Cr:B$ are the pull-up and pull-

down transistors of an inverter. Due to the unusual MacPitts

inverter structure Crystal could not determine the direction

of signal flow and identified the pull-up and pull-down

transistors as bidirectional. Since both of the transistors

are electrically connected the same transistor attribute

label has been placed on the side of the gates that are

connected. Transistors labeled Cr:C$ are the pull-up and

pull-down transistors of another inverter. Figure 4.6 shows

the transistor attribute labeling for the one bidirectional

transistor in a flag.

b. Crystal Commands for Clocked Circuits

(1) Problems Analyzing a MacPitts Design.

Crystal was designed to be used for a non-overlapping

clocking scheme. The overlapping clock phases and the five

segment period of the MacPitts clock (see Figure 2.2) make

the MacPitts pipeline adder circuit much more difficult to

analyze.
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Figure 4.4. Placement of a Transistor Attribute
Label on a Bidirectional Transistor
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Macpitts data storage elements, the register and the flag,

each have bidirectional transistors in them. The register

has five bidirectional transistors in each register cell and

the flag has one.

The procedure used to show the direction of

signal flow through a bidirectional transistor is to attach a

transistor attribute label to the transistor using Caesar. A

transistor attribute label has the following form:

Cr:(label)$

The label must be placed exactly in the middle of the source

or drain edge of the gate region of the transistor. This is

done by placing the center of the Caesar bounding box over

the center of the source or drain edge of the gate and

typing the following Caesar command:

la Cr:(label)$ center

Figure 4.4 shows a stipple plot of a bidirectional

transistor. The center of the bounding box is on the center

of the source edge of the gate region and the transistor

attribute label Cr:A$ has been affixed to this point.

If a bidirectional transisotr is not electrically

connected to any other bidirectional transistor the transistor

attribute label should be placed on the source edge of the

gate. If two or more bidirectional transistors are

electrically connected the same attribute label should be
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TABLE II

COMPARISON OF MEAD-CONWAY AND
CI.YSTAI, I)EIAY CALCUI[ATIONS

I Mead-Conway I Crystal

logic delay 56ns I 93.79ns

wire delay I 95ns I 105.84ns

pad delay I 21ns I 27ns

total delay I 172ns I 226.63ns
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up by 2.25. Multiplying the above wire delay by 2.25 gives

a total wire delay of 95ns.

(4) Pad Delays. The signal delay for the output

pad is approximately 13ns [Ref. 13]. Due to the lack of

available information on the signal delay for the input pad

the delay calculated by Crystal of 8ns will be used in this

comparison. This gives a total pad delay of 21ns.

(5) Comparison of Results. In Table II a

comparison is given of the circuit delays calculated using

the Mead-Conway methods and those calculated by Crystal.

The logic delays calculated using the Mead-Conway methods are

less than that calculated by Crystal because delays caused by

the polysilicon wires connecting the gates together in the

data-path are not taken into account in the Mead-Conway

calculations. The total circuit delay of 172ns calculated

by the Mead-Conway methods is in close agreement with the

226.63ns delay calculated by Crystal. It can be concluded

that the circuit delay information given by Crystal is

accurate and can be used with confidence.

3. Pipeline Circuits

a. Labeling Bidirectional Transistors

Before a timing analysis can be done on a MacPitts

design the bidirectional transistors in the circuit must be

identified by using the check command of Crystal and properly

labeled so that Crystal does not have to determine the

direction of signal flow through these transistors. The
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time, is 142t. Reference 12 states that the signal transit

time equals 0.3ns for a six micron design (lambda equals 3

microns) and the 1-bit combinational adder is a 4 micron

design (lambda equals 2 micron). The transit time is scaled

down by dividing by the scale factor 1.5 (6 microns divided

by 4 microns). This gives a transit time of 0.2ns. Using

this value, a logic delay of 28ns is obtained. This value

is doubled to account for stray capacitance in the circuit

giving a total logic delay of 56ns.

(3) Wire Delays. From Figure 4.2 it can be seen

that there are long metal and polysilicon runs in the circuit.

The total length of metal runs from the input pad to the

Weinberger array and from the data-path to the output pad is

approximately 3.9mm. The total length of polysilicon runs

from the input pad to the Weinberger array, from the Weinberger

array to the data-path and from the data-path to the output

pad is approximately 2.1mm. There are no significant

diffusion runs in the circuit.

Reference 12, page 231, states that metal line

delays equal 0.lns/lOmm and that polysilicon line delays

equal 200.Ons/lmm. Using these values a wire delay of 42ns

is calculated. The wire delays used in the above calculations

are based on a 6 micron design. When lambda is scaled down

the capacitance per unit length of wire stays constant but

the resistance scales up quadratically. Since lambda is

scaled down by a factor of 1.5 the wire resistance scales
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TABLE I

RESULTS OF LOGIC DELAY CALCULATIONS

LOGIC I k I f I GATE DELAY I # OF GATES I TOTAL
ELEMENT I I I I I DELAY

inverter 1 4 1 1 1 4t I I I 4t

pass
transistori - - 2t I I I 2t

nand gate1 81 3 48t I I I 48t

nand gate 1 4 1 2 1 16t 1 3 1 48t

nand gate 1 4 1I I 8t I 5 1 40t

TOTAL LOGIC DELAY = 142t

It7
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critical path is identified on the Caesar display screen

along with the timing delay information. Figure 4.3 shows

an example of how the timing delay information is displayed.

b. Validation of Crystal's Timing Data

(1) Introduction. Previous to this research

effort there had been no experience at the Naval Postgraduate

School in using Crystal to analyze circuits. The accuracy of

the results produced by Crystal was not known. In order to

gain confidence in Crystal a complete timing analysis of the

1-bit combinational adder previously analyzed by Crystal was

performed using the Mead-Conway guidelines in [Ref. 12].

The critical path found by Crystal was used

to determine which transistors in the circuit were on. The

delay calculations are divided into logic delays, wire

delays and pad delays.

(2) Logic Delays. The following equations were

used to calculate the logic delay in the circuit:

Tpt =2t

Tiny = fkt

Tnand = 2fkt

where Tpt is the delay for a pass transistor, Tinv is the

delay for an inverter, Tnand is the delay for a nand gate, t

is the signal transit time, f is the gate fanout, and k is

the pull-up to pull-down transistor ratio. Table I shows

that the total logic delay, in terms of the signal transit
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In line 57 the clear command is used so that a new

timing delay analysis on the same circuit can be made. In

lines 59, 65 and 68 new delay commands set ain, bin and cin

to 0, 1 and 0 respectively. The critical command is given on

line 71 and new critical path information is shown on lines

72 through 108. This time the critical path starts at the

input pad cin, goes through the Weinberger array and the

combinational logic in the data-path and ends at the output

pad res 226.63ns later. After finishing a Crystal timing

analysis the command "quit" should be used to exit the Crystal

program.

As can be seen from the timing analysis of the

1-bit combinational adder, the longest critical path occurs

when cin is driven to a low state. This is because the cin

signal must travel through the Weinberger array and the first

organelle in the data-path. This circuitry is normally at a

high state unless brought low by a low cin. A high cin causes

no level transitions so there is no delay through the

circuitry. For a low cin there is a low transition that

takes approximately 30ns to propagate through the Weinberger

array and the first organelle in the data-path.

If the -g (filename) option is used with the

critical command [Ref. 11] the critical path timing information

is printed in (filename) in a format that can be accessed by

Caesar using the Caesar "source" command. Each node in the
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logic except the flags block, registers and the ground,

power and clock pads is deleted from the circuit. This is

done so that Crystal does not use the extraneous circuitry

in determining the critical path through the registers and

flags. Next, the registers are deleted from the circuit

because the clock phase signals will take longer to reach

the flags than the registers. This is because the registers

are closer to the clock pads on the clock bus and also the

clock phase signals are further delayed in the flag block

by two inverters. Finally, the input and output lines of

*: each flag are disconnected from the extraneous data lines

going to the Weinberger array, if not already done so, and

the input and output wires of each flag are labeled (see

Figure 4.7). Figure 4.8 shows what the edited circuit

looks like for 4-bit 5-stage pipeline adder.

The timing analysis of a clocked circuit

is similar to that of a combinational circuit except that

*. . there is a separate set of delay and critical commands for

each clock phase. For the MacPitts overlapping clock there

is a separate set of delay and critical commands for each of

the five segments of the clock period. The clear command is

used between each set of delay and critical commands. Prior

*l to the delay commands, the clock phases that do not change

state during a section of the clock period should be set to

the high or low state using the set command [lef. 11]. Inputs

U that are set to a state are not used by Crystal to determine
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Figure 4.7. Disconnecting the Flag Input and Output
Lines
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the critical path because they do not have a state

transition. Also, if delay commands for inputs other than

the clock phases are not used Crystal assumes that the

input signals stabilize long before the start of the clock

period. Crystal then determines the longest critical

path in the circuit no matter what the state of the

*non-delayed inputs are. In Figure 4.9 the Crystal commands

used to analyze the clock phase delays through the flags

block are listed.

(3) Pipeline Stage Delays. A separate Crystal

timing analysis must be performed on the combinational logic

in each pipeline stage in order to obtain propagation delays

for each stage. First, the input and output signals of each

stage must be determined. Input signals come from input pads

or from register or flag outputs. Output signals are inputs

to registers, flags or output pads. Next, using Caesar, the

input and output lines of each stage are disconnected from

any logic elements that are not part of that stage. This is

done so that Crystal does not use circuitry that is not part

of a stage in determining the critical path through that

stage. Labels are then placed on all input and output lines.

Figures 4.10 and 4.11 show two different

circuits before they are edited using the above procedure

and Figures 4.12 and 4.13 show the circuits after they have

been edited. In Figure 4.12 node cl is the output line of

stage 1 of the pipeline and has been disconnected from the
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- script
. crystal addp4.sim
: inputs in<16:1> phia phib phic
: outputs out<16:1>
: set I phia phic
: delay phib 0 -1
: critical

: clear
: set I phia
: delay phib -1 0
: delay phic -1 0
: critical
i clear
t set 0 phib phic
: delay phia -1 0
: critical
: clear
: set 0 phib phic
: delay phia 0 -1
: critical
: clear

>. a: set I phia
: set 0 phib
: delay phic 0 -1

S,: critical
: quit

J, "

Figure 4.9. Crystal Commands: Timing Delay of
Clock Phases
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input of the storage register cell. Node dl is the input line

of stage 2 and has been disconnected from the output of the

register cell. In Figure 4.13 nodes ol and pl are output lines

of stage 4 and have been disconnected from the input lines of

the storage flags. Nodes o2 and p2 are inputs of stage 5 and

have been disconnected from the output lines of the flags.

After all stages have been isolated and input

and output lines labeled a .cif file is created using Caesar

and then a .sim file is created using Mextra. A Crystal timing

analysis is then performed on each stage in the pipeline

using the same procedure as used when performing an analysis

on a combinational logic circuit.

B. DESIGN COMPARISONS

Three important parameters used when comparing the

performance of integrated circuit designs are chip size,

power and speed.

In order to determine the speed of a MacPitts pipeline

design the logic delay in each stage and the clock phase

delays must be compared. The propagation time of the slowest

stage in the pipeline is compared to the sum of the first

two segments of the clock period tl and t2. This is because

all logic propagation in the circuit must be settled before

t3 when the inputs to all storage registers and flags are

sampled. The slowest of these times is then added to t3, t4

and t5 to determine the clock period.
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Table III shows the propagation delay for each stage of I
a 4-bit pipeline adder and an 8-bit pipeline adder (4 micron

designs). The long delays in stages 2 through 5 of each

adder are caused by long delays through the Weinberger array

and the long high-resistance polysilicon runs carrying data

from the registers to the array and carrying data back and

forth from the flags block to the array. The delays through

the Weinberger array are due to three factors. First, the

inputs to the array from the registers and flags are driven

by k=4 inverters. These inverters, which are not super

buffered, drive up to five nor gates in the array thus

adding substantial delay to the stage [Ref. 12]. This delay

could be considerably reduced if the outputs of all

registers and flags were super buffered. Second, the

propagation delay in the array is high due to the large

number of nested NOR gates in the array. In some cases up to

five NOR gates are nested to perform a particular function

(i.e. an XOR function). This is much more delay than would

be found in the two level nesting of a PLA. The excessive

delays in the array are also caused by the long polysilicon

lines that connect the inputs and outputs of the NOR gates.

In some cases an output of a NOR gate is connected to the

input of another NOR gate by a polysilicon wire that runs

nearly the total width of the array. The increase in stage

propagation delay of the 8-bit adder when compared to the

4-bit adder is due to the increased size of the Weinberger
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TABLE II I

PIPELINE STAGE DELAY

STAGE I 4-BIT PIPELINE ADDER i 8-BIT PIPELINE ADDER

1 I 33.59ns 51.87ns

2 126.14ns 255.53n$

3 106.60ns 222.89ns

4 142.70ns 250.63ns

5 141 .63ns 203.87ns
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array of the 8-bit adder and not due to a poorly designed

pipeline chip.

In Table IV the delay in each clock period segment is

listed. The long delays are due to the input clock pads not

being super buffered. One k=4 inverter on each clock pad

must drive eight k=4 inverters; one inverter for each of the

seven registers and one input inverter to the flags block.

Each of the input inverters of the registers and flag block

cause further delay because they are not super buffered but

must drive many register cells and flags. In the case of the

8-bit pipeline adder one k=4 inverter must drive twenty-

seven flags. Additional delay is caused by the long clock

bus. The clock signals must traverse a length nearly equal

to the height and width of the chip before reaching the

flags block. If the clock input pads, the input inverters,

all registers and the flags block were super buffered the

timing delay of each clock period segment would be

substantially improved.

Comparing Tables III and IV it can be seen that the

propagation delays through clock period segments tl and t2

are greater than the slowest stage for both the 4-bit and

8-bit pipeline adders. Thus, the clock period is found by

adding tl through t5. The clock period of the 4-bit 5-stage

pipeline adder is 486.74ns (2.055 MHz clock) and the clock

period of the 8-bit 5-stage pipeline adder is 706.32ns

(1.415 MHz clock).
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TABLE IV

CLOCK SIGNAL DELAY

CLOCK PERIOD I 4-BIT PIPELINE I 8-BIT PIPELINE
SEGMENT I ADDER I ADDER

ti I 116.00ns I 170.46ns

t2 I 66.62ns I 102.66ns

t3 I 82.93ns I 106.96ns

t4 I 100.87ns I 153.56ns

t5 120.0ns I 172.68ns
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Table V lists the chip size, power and speed of several

4 micron combinational and pipeline adder circuits designed

by MacPitts. In addition, a 16-bit 4-stage pipeline adder

that was designed by hand is also listed [Ref. 5]. (See

Figure 4.14.)

Chip size and worst case static power consumption are

standard outputs from the MacPitts silicon compiler. The

required power for the hand designed adder was found by

using a program called powest that makes an estimate of the

DC power required in a circuit based on the number of

g" enhancement and depletion mode transistors in the circuit.

Powest uses a sim file as input and an output of the

average DC power (based on one-half of the transistors being

on at any time) and the maximum DC power (based on all

transistors being on) is printed on the terminal screen. The

value of power listed in Table V for the hand designed adder

is the maximum DC power. The command to run powest is:

powest -p < filename.sim

For comparison, powest was run on all of the MacPitts

designs and the power estimates calculated by powest and

MacPitts were, on the average within 10% of each other.

* All chip speed values listed in Table V were calculated

by Crystal. Reference 5 estimates the clock speed of the

16-bit 4-stage pipeline adder as 8 MHz. This is seven times

faster than the 1.141 MHz calculated by Crystal. The reason
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Figure 4.14. Hand Designed 16-Bit 4-Stage Pipeline

Adder
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for the discrepancy is that reference 5 does not take in

account that the clock pads in the circuit, which are not

super buffered, must drive a large number of pass transistors.

Clock pad phia drives 138 pass transistors that clock data

into the five PLAs in the circuit while clock pad phib drives

121 pass transistors that clock data out of the PLAs.

Another interesting observation about the hand designed

circuit from reference 5 is that when the circuit is examined

using Caesar a misalignment of one-half lambda between the

data, power and ground buses going into the PLAs and the PLA

blocks is found. As seen in Figure 4.15, the bus

misalignments are not enough to disconnect any wires.

As expected, when the combinational adder circuits were

converted to pipeline circuits the chip size and power

increased, but the increase in chip throughput (or speed)

anticipated in a pipeline design did not occur. The slow

circuitry of the Weinberger array, non-super buffered clock

pads and long polysilicon runs in the MacPitts pipeline

circuits caused excessive delays and decreased performance

below that of the combinationalcircuits. The excessive

delays could be reduced if the Weinberger array was redesigned

to reduce the NOR gate nesting or replaced by a PLA, if all

input lines to the array were super buffered and if the long

polysilison runs were replaced with metal or diffusion runs.

If the design of a 16-bit pipeline adder were possible it is

expected that this design would have a clock speed less than
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and chip area much larger than the hand designed adder. Even

with fast logic in each pipeline stage and super buffered

clocks the fact that the last three segments of the MacPitts

clock period cannot be used for logic propagation insures

that the MacPitts pipeline designs will be slower than any

well designed hand-crafted circuit.

-. 0

: 103

.f :.



V. MACPITTS DESIGN ERRORS

A. INTRODUCTION

Although the MacPitts silicon compiler is expected to

generate error free designs, several cases have been found

where design errors have been made. These design errors

fall into two categories: wiring errors and alignment

errors. Wiring errors have occurred when wires become

electrically connected when they should not be and alignment

errors have occurred when circuitry has been placed

incorrectly on the chip so that it does not align properly

with adjacent circuitry.

B. WIRING ERRORS

1. Description of Errors

A case of a fatal wiring error was discovered where

the MacPitts compiler electrically connected all three clock

lines that run in the clock bus below the data-path to a

data line that was running from the data-path to the

Weinberger array. This error was found to occur whenever the

last organelle of the data-path or sequencer is the

organelle used by the compiler to transfer data from the

data-path to the Weinberger array (see Figure 5.1). The

vertical polysilicon data wire of this organelle runs

parallel and only four lambda away from a large ground bus
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line that is always placed on the right edge of the

data-path and sequencer. The horizontal clock bus must make

metal-to-polysilicon polysilicon-to-metal vias over this

ground bus. Since the data wire runs so close to the ground

bus it crosses the clock bus at the metal-to-polysilicon via

and becomes electrically connected to the clock lines (see

Figure 5.2). This error was also found by Kelly (as

mentioned in [Ref. 4]) when he used MacPitts to produce a

butterfly switching element chip at MIT Lincoln Laboratory.

Unfortunately, this error cannot be identified when a design

rule check is made on the circuit because no design rules

are violated.

It is not difficult to predict when this wiring error

is going to occur in the data-path and to correct it when it

is found. A programmer should first examine the MacPitts

.mac program to identify all statements that cause word size

operations to be performed and cause the compiler to produce

an organelle in the data-path. If the last word size

statement in the .mac program uses the "bit" data-path

function of the form:

(bit <bit-position> <integer-expression >)

the organelle that transfers data from the data-path to the

Weinberger array will be placed on the right edge of the

data-path and a fatal wiring error will occur. (See [Ref. 2]

for a description of the bit function.)
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It is more difficult to predict when this wiring

error is going to occur in the sequencer than in the data- .

path. Reference 8 contains details of sequencer wiring

errors.

2. Correction of Wiring Errors

The wiring errors in the data-path and sequencer can

be easily corrected using the Caesar VLSI circuit editor.

Thz) Caesar file that contains the last organelle of the

data-path or the sequencer must first be identified. This

file is then edited using Caesar and the right one or two

data lines are rerouted around the clock bus via as shown in

Figure 5.3.

If it has been determined that the "bit" function is

the last work size statement in the .mac program the steps

used in the MacPitts design cycle of a 5 micron design that

are listed on page 68 of reference 4 should be modified as

follows:

1. Generate a 5 micron .cif file as stated. The following
command will create several Caesar files each containing
a description of part of the design. (Ignore user
extension warning).

% cif2ca -1 250 filename.cif

2. Rename the top level Caesar file.

my project.ca filename.ca

3. Use Caesar to identify the Caesar file, symbol xx.ca,
that has the wiring in it.
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APPENDIX A

THE MACPITTS INTERPRETER

A. USE OF THE INTERPRETER

The MacPitts interpreter is used to test for syntax and

logical errors in the .mac file. The interpreter creates a

functional environment of the integrated circuit from the

.mac file without actually designing the circuit. This

functional environment can then be simulated.

The interpreter can be invoked by using the following

command:

% macpitts filename int herald

Filename is the filename of the .mac file without the .mac

extension. Herald is used so that as the MacPitts silicon

compiler reaches a milestone as it is processing the .mac

file, messages are printed to the terminal. Although the

herald statement can be omitted the milestone messages

assure the programmer that the silicon compiler is still

processing the .mac file on long compile runs.

When the interpreter is ready to start processing a

simulation run all registers, ports, processes, flags and

signals defined in the .mac file are listed in a table

on the terminal screen along with their values (see

Figure A.1). The first thirty-six items displayed in the

table are labeled from 0-9 and a-z. The MacPitts
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9. Redesign the data-path so that data can enter or leave
the data-path from either the left or right side to
reduce the length of wire runs from the pads.

10. Redesign the flags block and the data-path organelles
to save wasted space illustrated in Chapter II.
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redesigned to improve circuit speed. A PLA is now used for

all chip control-functions and the Weinberger array is used

only for bit sized boolean functions. The recommended

MacPitts improvements listed below, except for #2, #5 and

#6, have been incorporated in MetaSyn.

B. RECOMMENDATIONS

The following recommendations should be considered to

improve the MacPitts Silicon Compiler:

1. Add super buffers to all input pads.

2. Add super buffers to all data lines leaving the data-
path, sequencer and flags block, and to all clock
lines driving the registers and flags.

3. Redesign the design from to allow pads on all sides.

4. Use channel routing instead of river routing to reduce
the complexity of the Weinberger array.

5. Implement a faster algorithm for design of the
Weinberger array.

6. Redesign the registers and flags so that a more
conventional two-phase clock can be used in MacPitts
designs. This will eliminate the circuit delay of the
last three segments of the MacPitts clock that can not
be used for logic propagation.

7. Redesign the interpreter to make it more user friendly
and able to handle large designs containing many flags,
ports, signals, registers and processes as discussed
in Appendix A.

8. As mentioned in Chapter III, a data-path organelle
should be designed to set and shift data bits of a
data word so that data can be transferred from the
Weinberger array to the data-path.

1',
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attractive alternative when the time required to design a

circuit is a more important consideration than the speed or

size of the circuit. Until the cause of the alignment errors

discussed in Chapter V is found and corrected, all MacPitts

designs must be inspected carefully for the possibility of

alignment errors. Unexpectedly, it was also found that

combinational adder circuits were faster than pipeline adder

circuits because of the MacPitts clocking scheme and the

timing delay caused by the non-super buffered clock lines

driving the registers and flags.

Appendix A gives a complete list of all the MacPitts

interpreter commands and an explanation of their use. In

addition, all interpreter error statements and their

definitions are listed.

In 1983 the developers of the MacPitts silicon compiler

(Siskind, Southard, and Crouch [Ref. 3]) left MIT Lincoln

Laboratory and formed their own company, MataLogic, Inc., to

produce a commercial silicon compiler. MetaLogic's current

compiler, called MataSyn, is a redesigned version of the

MacPitts compiler. Most of the design limitations of

MacPitts have been eliminated in MetaSyn. Two of the more

significant improvements in MetaSyn are the redesign of the

interpreter and the Weinberger array. The new interpreter,

now called the simulator, is very flexible and user friendly

and has few of the limitations of the MacPitts interpreter

listed in Appendix A. The Weinberger array has been
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VI. CONCLUSION

A. SUMMARY

The objectives of this thesis were to determine what

the basic circuits in MacPitts designs are and how they are

used, to make perlormance comparisons of several different

adder designs with a hand-crafted adder design and to obtain

a better understanding of the MacPitts interpreter.

The basic building blocks that the MacPitts compiler

uses in circuits were found to be the data-path, the

sequencer, the flags block and the Weinberger array. The

circuit density and speed of the building blocks were found

to be low. This was expected since Siskind was quoted in

reference 14 as stating that optimizing chip performance was

not a primary MacPitts design goal. The functional

description of the circuit in the .mac program was found to

have a direct relationship to the circuit structures that

the compiler used to design the circuit.

It was found that circuits designed by the MacPitts

silicon compiler are very inefficient in terms of the amount

of circuitry per chip area and that the speed of a MacPitts

circuit is slow compared to hand-crafted designs. The

significant advantage that MacPitts-designed circuits have

over hand-crafted circuits is the reduction in time required

to design the circuit. This makes silicon compilers an
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compiler was installed under the UNIX 4.1 operating system.

It is thought that the version of the Franz LISP compiler

installed under UNIX 4.2 may be causing an unexpected

roundoff or truncation when the compiler calculates the

vertical and horizontal coordinates used to place circuitry

on the chip. Alignment errors can be corrected by using

Caesar.
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the chip clock bus. The flags block of the 5 micron 8-bit

5-stage pipeline adder is placed two lambda too high and

one-half lambda too far left on the chip. Figure 5.6 shows

the two lambda misalignment of the flags block clock lines

and a one-half lambda misalignment of the flags block data

lines. The flags block data lines have a two lambda overlap

with the chip data lines so even with a two lambda vertical

flags block misalignment the data lines are still

electrically connected. A flags block misalignment of eight

lambda in the vertical direction was found in the 4 micron

8-bit 5-stage pipeline adder. Figure 5.7 shows the clock

and data bus alignment errors for this circuit.

The Weinberger array alignment errors are more complex

than the flags block errors. In addition to errors where

the Weinberger array is placed incorrectly on the chip there

are also some internal alignment errors in the array. Figure

5.8 shows three misalignments of the Weinberger array buses

and the chip buses. Also shown is one internal misalignment

where a diffusion line is not properly connected to a pull-up

transistor. Weinberger array alignment errors will be

treated in detail in reference 8.

The cause of alignment errors is not yet understood.

Alignment errors have only been found in MacPitts designs

since the Macpitts compiler was installed under the UNIX 4.2

operating system. No alignment errors were found when the
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C. ALIGNMENT ERRORS

Alignment errors have been found in the flags block and

the Weinberger array of several different designs. Most of

the alignment errors that were found were identified by

performing a design rule check on the circuit that contained

the errors. The design rule checv program is able to find

the errors because in most cases metal-to-metal,

polysilicon-to-polysilicon or diffusion-to diffusion

separation errors occur.

In the flags block the errors have occurred when the

compiler places the flags block on the chip so that the

internal clock, ground and data buses of the block do not

properly align with the chip clock, ground and data buses.

-The misalignment of the flags block has been found in three

designs; the 4 micron 4-bit 5-stage pipeline adder and both

the 4 micron and 5 micron 8-bit 5-stage pipeline adders. In

each case the circuitry inside the flags block has been

designed correctly but the block itself has been placed

incorrectly on the chip.

In the case of the 4 micron 4-bit 5-stage pipeline

adder the flags block was placed two lambda too high in the

circuit. Figure 5.4 shows that the flags block ground bus

does not properly connect with the chip ground bus. In

Figure 5.5 the metal-polysilicon contacts of the flags block

clock lines do not properly align with the metal lines of

," .L i *
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caesar filename

The Caesar file for the complete data-path/sequencer
may have to be edited in Caesar to identify the file
that contains the last organelle fo the data-path/
sequencer where the wiring error is located. Caesar
can be used to reroute the data lines around the clock
bus via.

4. Edit the top level Caesar file again and create a new
.cif file.

: sa

: cif 248

:q

5. Next, perform a design rule check of the new .cif file.
(Note that the cif command line ends in -qnq not -gng
in the following command).

" cif filename.cif -qnq

l ll filename.co

drc filename.sco

6. To perform an event simulation on the modified 5 micron
design the procedure listed on page 71 of reference 4
for the 4 micron design should be followed to affix
labels to the bonding pads, obtain a node extract,
and start the simulation run. Insure that the 248
scale is used when creating a new .cif file of a 5
micron design in Caesar (see page 96 of reference 4).

For a micron design that contains wiring errors

the MacPitts design cycle listed on page 70 of reference 4

should be followed. The wiring errors can be corrected,

using the above procedure, at the same time that the labels

9: are affixed to the bonding pads.
°.1
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REGISTERS FLAGS
1: aG = undefined 5: q1 = undefined
2: al = undefined 6: ri = undefined
3: sto =undefined 7: carry =undefined

4: w2 = undefined
SIGNALS

PORTS b: reset =undefined

8: a&in undefined c: cm = undefined
9: bin =tri-state d: cout =undefined

a: res =undefined

PROCESSES
e: countup = (undefined)
f: countdown =(undefined)

Ready Val ue-O

Figure A.l. The Interpreter Screen Display
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interpreter does not have the ability to label more than

thirty-six items so items thirty-seven and higher are not

labeled. At the bottom of the screen a command line is

displayed. The command line shows the status of the

interpreter at any time. Possible command line displays are

Ready, indicating that the interpreter is ready to accept a

command, and Clocking, indicating that the interpreter is

performing a functional simulation of the chip through one

or more clock cycles. On the bottom right of the screen the

contents of a special interpreter register called "value"

are shown. The value register is used to set ports and

registers to particular values and also indicates the number

of clock cycles a simulation run will execute.

There is one serious limitation with the interpreter

that causes it to be unusable for many large chip designs.

If the total number of registers, ports and processes

defined in the .mac file is greater than twenty there will

be too many items for the interpreter to display on the

right side of the terminal screen at once (see Figure A.1).

Also, if the total number of flags and signals is greater

than twenty-two there will be too many items for the

interpreter to display on the left side of the terminal

screen at once. Unfortunately, the interpreter continues to

try to display those items that will not fit on the screen.

Since the interpreter is never able to display all items
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control of the terminal is never turned over to the

programmer for a simulation run. The only way to stop the

interpreter if this happens is to abort the run by typing a

control Z.

The interpreter uses information from three different

locations to determine the values of all registers, ports,

signals, flags and processes during a simulation run. The

* first location is the "console" where the programmer, using

* the terminal keyboard, can specify the values of the above

items. The second location is the functional environment of

the circuit, called the "chip". This is where the

interpreter uses input information from the programmer to

determine the values of the above items. The last location

is called the "environment" and is a programmer specified

functional environment that the programmer may have the

interpreter use during simulation (see the "e" command

below).

B. INTERPRETER COMMANDS

All interpreter commands are screen oriented which

means the command is executed as soon as the key is pressed

- - and a carriage return is not necessary. Table VI gives a

list of the interpreter commands. These commands can be

displayed on the screen by typing '?'

- . Most of the interpreter commands are self-explanatory

but several require additional explanation. Several commands
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TABLE VI

MACPITTS INTERPRETER COMMAND SUMMARY

? - This menu
'L - Repaint screen
p - Put interpreter state to (file-name>,int
g - Get interpreter state from <file-name>.int
e - Enable/Disable environment from (file-name>.env
c - Clock system (value> cycle(s)
I - Escape to Lisp system
q - Quit
j - Move cursor down
k - Move cursor up

6 (tag> - Move cursor to (tag>
t - Set flag, input signal, or i/o signal to t
f - Set flag, input signal, or i/o signal to f
s - Set register, input port, or i/o port to (value>
u - Set register, flag, input port, i/o port,

input signal, or i/o signal to undefined
T - Set i/o port or i/o signal to tri-state
x - Clear (value> register to 0
- - Negate (value) register

(digit> - Enter <digit> into (value> register

.%%
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affect only one item on the screen. Before these commands

can be used the item to be affected must be highlighted by

the inverse cursor. The "j", Ilk" and "G" commands are used

to move the cursor around the screen. If an adm3a terminal

is used instead of a vtlOO terminal the inverse cursor is

not displayed and only the "G" command can be used to place

the "invisible" cursor over the item to be affected.

When the registers, ports, processes, flags and signals

are initially displayed on the screen by the interpreter

their values are undefined or tni-state if a tni-state port

V or signal is defined in the .mac file. (See Reference 2 for

an explanation of the different register, port and signal

types.) Before a simulation run is made all input and i/o

ports and signals must be set to some initial value. The "t"

and '"f" commands are used to set input or i/o signals to

true or false, respectively. The '"s" command is used to set

an input or i/o port to the value stored in the value

register. Another command, the '"T" command, can also affect

the values of input or i/o ports and signals but has proven

to be not very useful. If the 'IT" command is used on an

input port or signal, or an i/o port or signal that is used

for input only in the .mac program, the port or signal value

will be set to a high impedance state (tni-state). The port

or signal value will stay at high impedance until explicitly

set to some value by the programmer using the "'"Is ", or

'If" commands. If an i/o port or signal is used for output
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only or both input and output in the .mac program the 'IT"

command will cause the port or signal value to change to

undefined.

The "c" command is used to simulate the functional

environment of the chip. The number of clock cycles

simulated in one simulation run is indicated by the value

register. If 0 or 1 is stored in the value register only

one clock cycle will be simulated.

After a simulation run it may be desirable to store the

values of all items displayed on the screen. This can be

done by using the "p" command. The state of the functional

environment is saved in a file called filename.int where

filename is the same as the filename.mac file. If more than

one state is to be saved the programmer must login on

another terminal and rename the .int file after each state

is saved because each new state will be saved in the same

.int file.

The programmer also has the option of specifying the

functional environment that the interpreter will use to

simulate a particular .mac file [Ref. 2]. The "e" command is

used to enable/disable a functional environment stored in

the filename.env file. There is no published information or

g documentation on the format of the functional environment

in the .env file so this option has never been used at the

Naval Postgraduate School.
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C. INTERPRETER ERROR STATEMENTSI

As stated before, the purpose of performing an

interpreter simulation is to check for syntax and logical X

errors in the .mac file before a full chip design is made by

the MacPitts compiler. Logical errors can be found by

performing a simulation run and then comparing the results

obtained to those expected. Reference 4, pages 47-49, shows

a good example on how to perform a simulation of a .mac file

using the MacPitts interpreter.

Syntax errors in the .mac file are indicated in one of

two ways by the compiler. First, if the error is severe

enough the compiler stops the creation of the functional

environment and displays an error message on the terminal

screen that will give an indication of the syntax error. The

compiler then returns the UNIX operating system back to

the programmer. An example of a severe syntax error is an

unequal number of open and closed parentheses in the .mac

file. Less severe syntax errors usually do not show up

until initial values are loaded into the input or i/o ports

and signals or until a simulation run is performed. A short

error message is then displayed on the command line of the

terminal screen.

There are over thirty different error messages that the

compiler can display when a syntax error is found. The error

messages and their meaning are as follows:
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1. Interpreter error 1: the interpreter tried to change

the state (value) of a register but found the current

state to be empty (null), possessing no value. This

error indicates an improper register definition or

usage in the .mac file.

2. Interpreter error 2: same as 1 above but for a flag.

3. Interpreter error 3: same as 1 above but for a port.

4. Interpreter error 4: same as 1 above but for a signal.

5. Interpreter error 5: Unrecognizable function. Examples

of some expected functions are setq, not, bit, call

and if. See reference 2 for a listing of all MacPitts

functions.

6. Interpreter error 6: the antecedent of an if statement

is not t, f or undefined as required.

7. Interpreter error 7: the interpreter tried to

determine the state (value) of a register but found the

current state to be empty (null), possessing no value.

This error indicates an improper register definition

or usage in the .mac file.

8. Interpreter error 8: same as 7 above but for a flag.

9. Interpreter error 9: same as 7 above but for a process.

10. Interpreter error 10: same as error 7 above but for

a port.

11. Interpreter error 11: same as error 7 but for a

signal.
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12. Unrecognizable atomic form: an unknown alpha-numeric

string is in the .mac file. Check for a missing

definition or misspelled word.

13. Process state out of bounds: the state (value) of

a process is less than zero. Check the .mac file for

a statement improperly setting a process to a value

less than zero.

14. This process has too many returns: a return from a

subroutine was encountered for which there was no

previous call statement. Check the .mac file for the

correct number of returns or for a missing call

statement.

15. This process has too many calls: a call to a

subroutine was made but no return statement was found.

Check .mac file for correct number of calls or for a

missing return statement.

16. Invalid bit selector: the bit selector in the data-

path function "bit" is not between 0 and the bit size

of the data-path as required.

17. Too many arguments: all MacPitts J~inctions require

only one or two arguments. Check the .mac file and

Reference 2.

18. Too few arguments: see 17 above.

19. A reset signal is needed: a reset signal has not been

defined when the "process" form is used in the -mac

file.
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20. Double signal (port) setq, chip vs. environment:

the interpreter attempts to set a signal (port) to a

value different than that assigned to that signal (port)

by the functional environment from the .env file.

21. Double signal (port) setq, chip vs. console: the

interpreter attempts to set a signal (port) to a value

different than that assigned to that signal (port) by

the programmer using the "s", "t" or "f" commands.

22. Double signal (port) setq, environment vs. chip:

the reverse of 20 above.

23. Double register setq: two different setq statements

in the .mac file attempt to assign a value to the

same register at the same time.

24. Double process setq: same as 23 above but for a

process.

25. Double port setq: same as 23 above but for a port.

26. Only one character per character-constant: this

error indicates that an attempt was made to set the

value of a constant to a character string longer than

one character. The value of a constant can be an

integer or a single character. If the value of a

constant is set to a single character the ASCII

equivalent of that character becomes the value of the

constant.

In addition to the above syntax error statements there

are two syntax warning statements. These statements indicate
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that there may be a syntax error and caution should be

exercised during the simulation. These warning statements

are:

1. This process has undefined state: the interpreter

has encountered a process in the functional environment

whose state (value) is undefined.

2. Antecedent of if is undefined: the interpreter has

encountered a register, port, signal, process, or flag

in the functional environment being used as the

antecedent of an if statement and whose value is

undefined.

The above two warning statements are common for pipeline

design architectures. Initially the value of the ports,

registers, processes, signals, and flags of each stage of

the pipeline are undefined and will stay undefined until

data is clocked into and out of each stage.

The MacPitts interpreter also displays error statements

in the command line of the terminal screen if an interpreter

command has been executed improperly by the programmer.

The interpreter command error statements are:

1. File not found: .int or .env file cannot be found.

2. Cannot set this thing to value: only registers and

ports can be set to value.

3. Cannot set this thing to t, f: only signals or flags

can be set to t or f.
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4. Cannot set this thing to undefined: processes

cannot be set to undefined.

5. Cannot set this thing to tri-state: only input or

i/o ports and signals can be set to tri-state.

6. Invalid command type ? for help: check interpreter

command list for correct command.

7. Cannot input from this port (signal): check for

input or i/o port (signal).

8. Cannot output to this port (signal): check for

output or i/o port (signal).
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